Featured Publications

nature cover

Bennartz, R., M. D. Shupe, D. D. Turner, V. P. Walden, K. Steffen, C. J. Cox, M. S. Kulie, N. B. Miller, and C. Pettersen, 2013. July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496, 83-86, doi:10.1038/nature12002

bams cover

Shupe, M. D., D. D. Turner, V. P. Walden, R. Bennartz, M. Cadeddu, B. Castellani, C. Cox, D. Hudak, M. Kulie, N. Miller, R. R. Neely III, W. Neff, and P. Rowe, 2013. High and Dry: New observations of tropospheric and cloud properties above the Greenland Ice Sheet. Bull. Amer. Meteor. Soc., 94, 169-186. doi:10.1175/BAMS-D-11-00249.1

All Publications

Under Review


  • Pettersen, C., Henderson, S.A., Mattingly, K.S., Bennartz, R., and Breeden, M.L., 2022. The Critical Role of Euro-Atlantic Blocking in Promoting Precipitation in Central Greenland, JGR: Atmospheres, doi:10.1029/2021JD035776

  • Arouf, A., H. Chepfer, T. Vaillant de Guelis, M. Chiriaco, M. D. Shupe, R. Guzman, A. Feofilov, P. Raberanto, T. S. L’Ecuyer, S. Kato, and M. R. Gallagher, 2022. The surface longwave cloud radiative effect derived from space lidar observations. Atmospheric Measurement Techniques, doi:10.5194/amt-15-3893-2022

  • Gallagher, M. R., M.D. Shupe, H. Chepfer, and T. L'Ecuyer, 2022. Relating snowfall observations to Greenland ice sheet mass changes: an atmospheric circulation perspective, The Cryosphere, doi:10.5194/tc-16-435-2022

  • Sterzinger, L.J., Sedlar, J., Guy, H., Neely III, R.R. and Igel, A.L., 2022. Arctic mixed-phase clouds sometimes dissipate due to insufficient aerosol: evidence from observations and idealized simulations. Atmospheric Chemistry and Physics, doi:10.5194/acp-22-8973-2022

  • 2021

  • Guy, H., Brooks I.M. and 10 others, 2021. Controls on surface aerosol number concentrations and aerosol limited cloud regimes over the central Greenland Ice Sheet, Atmospheric Chemistry and Physics, doi:10.5194/acp-21-15351-2021

  • 2020

  • McIlhattan, E.A., C. Pettersen, N.B. Wood, and T.S. L'Ecuyer, 2020. Satellite observations of snowfall regimes over the Greenland Ice Sheet. The Cryosphere, doi:10.5194/tc-14-4379-2020

  • Borg, S.M., S.M. Cavallo, and D.D. Turner, 2020. Characteristics of tropopause polar vortices based on observations over the Greenland Ice Sheet, J. Appl. Meteor. Clim., doi:10.1175/JAMC-D-20-0004.1

  • Mattingly, K.S., T.L. Mote, X. Fettweis, D. van As, K. Van Tricht, S. Lhermitte, C. Pettersen, and R.S. Fausto, 2020. Strong Summer Atmospheric Rivers Trigger Greenland Ice Sheet Melt through Spatially Varying Surface Energy Balance and Cloud Regimes, J. Clim., doi:10.1175/JCLI-D-19-0835.1

  • Gallagher, M.R., H. Chepfer, M.D. Shupe, and R. Guzman, 2020. Warm Temperature Extremes Across Greenland Connected to Clouds, GRL, doi:10.1029/2019GL086059

  • 2019

  • Solomon, A. and M.D. Shupe, 2019. A Case Study of Airmass Transformation and Cloud Formation at Summit, Greenland, J. Atmos. Sci., doi:10.1175/JAS-D-19-0056.1

  • Bahramvash Shams, S., V.P. Walden, I. Petropavlovskikh, D. Tarasick, R. Kivi, S. Oltmans, B. Johnson, P. Cullis, S.W. Sterling, L. Tholix, and Q. Errera, 2019. Variations in the vertical profile of ozone at four high-latitude Arctic sites from 2005 to 2017, Atmos. Chem. Phys., doi:10.5194/acp-19-9733-2019

  • Bennartz, R., F. Fell, C. Pettersen, M.D. Shupe, and D. Schuettemeyer, 2019. Spatial and temporal variability of snowfall over Greenland from CloudSat observations, Atmos. Chem. Phys., doi:10.5194/acp-19-8101-2019

  • Stillwell, R.A., R.R. Neely III, J.P. Thayer, V.P. Walden, N.B. Miller, and M.D. Shupe, 2019. Radiative influence of horizontally oriented ice crystals over Summit, Greenland. J. Geophys. Res., JGR: Atmosphere, doi:10.1029/2018JD028963

  • Cox, C.J., D.C. Noone, M. Berkelhammer, M. O’Neill, M.D. Shupe, N.B. Miller, W.D. Neff, V.P. Walden, and K. Steffen, 2019. On super-cooled liquid fogs over the central Greenland ice sheet. Atmos. Chem. Phys., doi:10.5194/acp-19-7467-2019

  • 2018

  • Lacour, A., H. Chepfer, N.B. Miller, M.D. Shupe, V. Noel, X. Fettweis, H. Gallee, J.E. Kay, R. Guzman, and J. Cole, 2018. How well are clouds simulated over Greenland in CMIP5 models? Consequences for the surface cloud radiative effect over the ice sheet. J. Climate, doi:10.1175/JCLI-D-18-0023.1

  • Gallagher, M., M.D. Shupe, and N.B. Miller, 2018. Relationships between atmospheric circulation and measurements of temperature, clouds, and radiation at Summit Station, Greenland with self-organizing maps. J. Climate, doi:10.1175/JCLI-D-17-0893.1

  • Edwards-Opperman, J., S. Cavallo, and D.D. Turner, 2018. The occurrence and properties of long-lived liquid bearing clouds over the Greenland Ice Sheet and their relationship to the North Atlantic Oscillation. J. Appl. Meteor. Clim., doi:10.1175/JAMC-D-17-0230.1

  • Pettersen, C., R. Bennartz, A.J. Merrelli, M.D. Shupe, D.D. Turner, and V.P. Walden, 2018. Precipitation regimes over central Greenland inferred from 5 years of ICECAPS observations. Atmos. Chem. Phys., doi:10.5194/acp-18-4715-2018

  • Miller, N.B., M.D. Shupe, J.T.M. Lenaerts, J.E. Kay, G. de Boer, and R. Bennartz, 2018. Process-based evaluation of ERA-Interim, Climate Forecast System version 2, and Community Earth System Model in central Greenland. J. Geophys. Res., doi:10.1029/2017JD027377

  • Stillwell, R.A., R.R. Neely III, J.P. Thayer, M.D. Shupe, and D.D. Turner, 2018. Improved cloud phase determination of low level liquid and mixed-phase clouds by enhanced polarimetric lidar. Atmos. Meas. Tech., doi:10.5194/amt-11-835-2018

  • 2017

  • Lacour, A., H. Chepfer, M.D. Shupe, N. Miller, V. Noel, J. Kay, and D.D. Turner, 2017. Greenland clouds observed by Calipso: comparison with ground-based Summit observations. J. Climate, 30, 6065-6083, doi:10.1175/JCLI-D-16-0552.1

  • McIllhattan, E.A., T.S. L'Ecuyer, and N.B. Miller, 2017. Observational evidence linking Arctic supercooled liquid cloud biases in CESM to snowfall processes. J. Climate, 30, 4477-4495, doi:10.1175/JCLI-D-16-0666.1

  • Solomon, A., M. D. Shupe, and N. B. Miller, 2017. Cloud-atmospheric boundary layer-surface interactions on the Greenland Ice Sheet during the July 2012 extreme melt event. J. Climate, 30, 3237-3252. doi:10.1175/JCLI-D-16-0071.1

  • Miller, N.B., M.D. Shupe, C.J. Cox, D. Noone, and K. Steffen, 2017. The surface energy budget at Summit, Greenland. The Cryosphere, 11, 497-516, doi:10.5194/tc-2016-206

  • 2016

  • Matsushita, S., K. Asada, P. Martin-Cocher, M.-T. Chen, P. Ho, M. Inoue, P. Koch, S. Paine, and D.D. Turner, 2016. 3.5-Year monitoring of 225 GHz opacity at the Summit of Greenland. Pub. Astronomical Soc. Pacific, 129, 972

  • Kay, J.E., L. Bourdages, N.B. Miller, A. Morrison, V. Yettella, H. Chepfer, and B. Eaton, 2016. Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations. J. Geophys. Res., 121, 4162-4176, doi:10.1002/2015JD024699

  • Van Tricht, K., S. Lhermitte, J. Lenaerts, I. Gorodetskaya, T. L’Ecuyer, B. Noel, M. van den Broeke, D. D. Turner, and N. van Lipzig, 2016. Clouds enhance Greenland ice sheet meltwater runoff. Nat. Comms., 7:10266, doi:10.1038/ncomms10266

  • Turner, D.D., S. Kneifel, and M. Cadeddu, 2016. An improved liquid water absorption model at microwave frequencies for supercooled liquid water clouds.J. Atmos. Oceanic Tech., 33, 33-44, doi:10.1175/JTECH-D-15-0074.1

  • Pettersen, C., R. Bennartz, M.S. Kulie, A.J. Merrelli, M.D. Shupe, and D.D. Turner, 2016. Microwave signatures of ice hydrometeors from ground-based observations above Summit, Greenland. Atmos. Chem. Phys., 16, 4743-4756, doi:10.5194/acp-16-4743-2016

  • Uttal. T., and Coauthors (including C. J. Cox, V. Walden, M. Shupe, D. D. Turner) 2016. International Arctic Systems for Observing the Atmosphere (IASOA): An International Polar Year legacy consortium. Bull. Amer. Meteor. Soc., 97, 1033-1056. doi:10.1175/BAMS-D-14-00145.1

  • 2015

  • Cox, C.J., V.P. Walden, P.M. Rowe, and M.D. Shupe, 2015. Humidity trends imply increased sensitivity to clouds in a warming Arctic. Nature Communications, 6:10117, doi:10.1038/ncomms10117

  • Miller, B.G., C.J. Cox, R.J. Hougham, V.P. Walden, K.B. Eitel, and A.D. Albano, 2015. Adventure learning as a curricular approach that transcends geographies and connects people to place, The Curriculum Journal, doi:10.1080/09585176.2015.1043925

  • Miller, N. B., M. D. Shupe, C. J. Cox, V. P. Walden, D. D. Turner, and K. Steffen, 2015. Cloud radiative forcing at Summit, Greenland. J. Climate, 28, 6267-6280, doi:10.1175/JCLI-D-15-0076.1.

  • Castellani, B., M.D. Shupe, D.R. Hudak, and B.E. Sheppard, 2015. The annual cycle of snowfall at Summit, Greenland. J. Geophys. Res. Atmos., 120, 6654-6668, doi:10.1002/2015JD023072.

  • Murray, B., C. Salzmann, A. Heymsfield, S. Dobbie, R. Neely, and C. Cox, 2015. A review of trigonal ice crystals in Earth’s atmosphere, Bull. Am. Met. Soc., 96, 1519–1531, 10.1175/BAMS-D-13-00128.2

  • 2014

  • Cox, C., V. Walden, G. Compo, P. Rowe, M. Shupe, and K. Steffen, Downwelling longwave flux over Summit, Greenland, 2010-2012, 2014. Analysis of surface-based observations and evaluation of ERA-Interim using wavelets, J. Geophys. Res., doi:10.1002/2014JD021975.

  • Van Tricht, K., I.V. Gorodetskaya, S. Lhermitte, D.D. Turner, J.H. Schween, and N.P.M van Lipzig, 2014. An improved algorithm for polar cloud-base detection by ceilometer over the ice sheets. Atmos. Meas. Technol., 7, 1153-1167, doi:10.5194/amt-7-1153-2014.

  • Kneifel, S., S. Redl, E. Orlandi, U. Loehnert, M.P. Cadeddu, D.D. Turner, and M.-T. Chen, 2014. Absorption properties of supercooled liquid water between 31 and 225 GHz: Evaluation of absorption models using ground-based observations. J. Appl. Met. Clim., 53, 1028-1045, doi:10.1175/JAMC-D-13-0214.1.

  • Neff, W., G. Compo, F.M. Ralph, and M.D. Shupe, 2014. Continental heat anomalies and the extreme melting of the Greenland ice surface in 2013 and 1889. J. Geophys. Res., 119. doi:10.1002/2014JD021470.

  • 2013

  • Neely III, R.R., M. Hayman, R. Stillwell, J.P. Thayer, R.M. Hardesty, M. O'Neill, M.D. Shupe, and C. Alvarez, 2013. Polarization LIDAR at Summit, Greenland for the detection of cloud phase and particle orientation. J. Atmos. Ocean. Technol., 30, 1635-1655.

  • Bennartz, R., M.D. Shupe, D.D. Turner, V.P. Walden, K. Steffen, C.J. Cox, M.S. Kulie, N.B. Miller, and C. Pettersen, 2013. July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496,83-86, doi:10.1038/nature12002.

  • Shupe, M.D., D.D. Turner, V.P. Walden, R. Bennartz, M. Cadeddu, B. Castellani, C. Cox, D. Hudak, M.S. Kulie, N.B. Miller, R.R. Neely III, W. Neff, and P. Rowe, 2013. High and Dry: New observations of tropospheric and cloud properties above the Greenland Ice Sheet. Bull. Amer. Meteor. Soc., 94, 169-186. doi:10.1175/BAMS-D-11-00249.1.

  • Miller, N.B., D.D. Turner, R. Bennartz, M.D. Shupe, M.S. Kulie, M.P. Cadeddu, and V.P. Walden, 2013. Surface-based inversions above central Greenland. J. Geophys. Res., 118, 495-506, doi:10.1029/2012JD018867.